add

Sunday, 6 March 2016

learn how to integrate tan x

integral of tan x
Strategy: Make in terms of sin's and cos's; Use Substitution.
 
(integral) tan x dx = (integral) sin x
cos x
dx
set
  u = cos x.
then we find
  du = - sin x dx substitute du=-sin x, u=cos x
 
(integral) sin x
cos x
dx = - (integral)
(-1) sin x dx
cos x
 
= - (integral) du
u
Solve the integral = - ln |u| + C
substitute back u=cos x
= - ln |cos x| + C

Alternatively,

    (integral) tan x dx = - ln |cos x| + C
    = ln | (cos x)-1 | + C
    = ln |sec x| + CTherefore:
    (integral) tan x dx = - ln |cos x| + C = ln |sec x| + C

No comments:

Post a Comment